NIMCET PYQ 20171
Let f(x) be a polynomial of degree four, having extreme value at x = 1 and x = 2. If limx→0[1+f(x)x2]=3, then f(2) is
Go to Discussion
NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ
Solution
Given it has extremum values at x=1 and x=2
⇒f′(1)=0 and f′(2)=0
Given f(x) is a fourth degree polynomial
Let
f(x)=ax4+bx3+cx2+dx+eGiven
limx→0[1+f(x)x2]=3
limx→0[1+ax4+bx3+cx2+dx+ex2]=3
limx→0[1+ax2+bx+c+dx+ex2]=3
For limit to have finite value, value of 'd' and 'e' must be 0
⇒d=0 & e=0
Substituting x=0 in limit
⇒ c+1=3
⇒ c=2
f′(x)=4ax3+3bx2+2cx+d
x=1 and x=2 are extreme values,
⇒f′(1)=0 and $f^{\prime}(2)=0
⇒ 4a+3b+4=0 and 32a+12b+8=0
By solving these equations
we get, a=12 and b=−2
So,
f(x)=x42−2x3+2x2
⇒f(x)=x2(x22−2x+2)
⇒f(2)=0
[{"qus_id":"3388","year":"2018"},{"qus_id":"3909","year":"2019"},{"qus_id":"4306","year":"2017"},{"qus_id":"4315","year":"2017"},{"qus_id":"9449","year":"2020"},{"qus_id":"10665","year":"2021"},{"qus_id":"11130","year":"2022"},{"qus_id":"11136","year":"2022"},{"qus_id":"11509","year":"2023"},{"qus_id":"11523","year":"2023"},{"qus_id":"11550","year":"2023"},{"qus_id":"11624","year":"2024"},{"qus_id":"11656","year":"2024"},{"qus_id":"10196","year":"2015"}]